14 research outputs found

    Mitochondria and neuroprotection in stroke: Cationic arginine-rich peptides (CARPs) as a novel class of mitochondria-targeted neuroprotective therapeutics

    Get PDF
    Stroke is the second leading cause of death globally and represents a major cause of devastating long-term disability. Despite sustained efforts to develop clinically effective neuroprotective therapies, presently there is no clinically available neuroprotective agent for stroke. As a central mediator of neurodamaging events in stroke, mitochondria are recognised as a critical neuroprotective target, and as such, provide a focus for developing mitochondrial-targeted therapeutics. In recent years, cationic arginine-rich peptides (CARPs) have been identified as a novel class of neuroprotective agent with several demonstrated mechanisms of action, including their ability to target mitochondria and exert positive effects on the organelle. This review provides an overview on neuronal mitochondrial dysfunction in ischaemic stroke pathophysiology and highlights the potential beneficial effects of CARPs on mitochondria in the ischaemic brain following stroke

    Proteomic analysis of cortical neuronal cultures treated with poly-arginine peptide-18 (R18) and exposed to glutamic acid excitotoxicity

    Get PDF
    Poly-arginine peptide-18 (R18) has recently emerged as a highly effective neuroprotective agent in experimental stroke models, and is particularly efficacious in protecting cortical neurons against glutamic acid excitotoxicity. While we have previously demonstrated that R18 can reduce excitotoxicity-induced neuronal calcium influx, other molecular events associated with R18 neuroprotection are yet to investigated. Therefore, in this study we were particularly interested in protein expression changes in R18 treated neurons subjected to excitotoxicity. Proteomic analysis was used to compare protein expression patterns in primary cortical neuronal cultures subjected to: (i) R18-treatment alone (R18); (ii) glutamic acid excitotoxic injury (Glut); (iii) R18-treatment and glutamic acid injury (R18 + Glut); (iv) no treatment (Cont). Whole cell lysates were harvested 24 h post-injury and subjected to quantitative proteomic analysis (iTRAQ), coupled with liquid chromatography-tandem mass spectrometry (LC-MS/ MS) and subsequent bioinformatic analysis of differentially expressed proteins (DEPs). Relative to control cultures, R18, Glut, and R18 + Glut treatment resulted in the detection of 5, 95 and 14 DEPs respectively. Compared to Glut alone, R18 + Glut revealed 98 DEPs, including 73 proteins whose expression was also altered by treatment with Glut and/or R18 alone, as well as 25 other uniquely regulated proteins. R18 treatment reversed the up- or down-regulation of all 73 Glut-associated DEPs, which included proteins involved in mitochondrial integrity, ATP generation, mRNA processing and protein translation. Analysis of protein-protein interactions of the 73 DEPs showed they were primarily associated with mitochondrial respiration, proteasome activity and protein synthesis, transmembrane trafficking, axonal growth and neuronal differentiation, and carbohydrate metabolism. Identified protein pathways associated with proteostasis and energy metabolism, and with pathways involved in neurodegeneration. Collectively, the findings indicate that R18 neuroprotection following excitotoxicity is associated with preservation of neuronal protein profiles, and differential protein expression that assists in maintaining mitochondrial function and energy production, protein homeostasis, and membrane trafficking

    Microglia are both a source and target of extracellular cyclophilin A

    Get PDF
    Glioblastoma (GBM) are lethal primary brain tumours whose pathogenesis is aided, at least partly, via a pro-tumorigenic microenvironment. This study investigated whether microglia, a cell component of the GBM microenvironment, mediates pro-tumorigenic properties via the action of cyclophilin A (CypA), a potent secretable chemokine and cytoprotectant that signals via the cell surface receptor, CD147. To this end, intracellular and secreted CypA expression was assessed in human primary microglia and BV2 microglial cells treated with the endotoxin, lipopolysaccharide (LPS) and the oxidative stress inducer, LY83583. We report that human primary microglia and BV2 microglia both express CypA and CD147, and that BV2 microglial cells secrete CypA in response to pro-inflammatory and oxidative stimuli. We also demonstrate for the first time that recombinant CypA (rCypA; 1nM–1000nM) dose-dependently increased wound healing and reduced basal cell death in BV2 microglial cells. To determine the cell–signalling pathways involved, we probed microglial cell lysates for changes in ERK1/2 and AKT phosphorylation, IκB degradation, and IL-6 secretion using Western blot and ELISA analysis. In summary, BV2 microglial cells secrete CypA in response to inflammatory and oxidative stress, and that rCypA increases cell viability and chemotaxis. Our findings suggest that rCypA is a pro-survival chemokine for microglia that may influence the GBM tumour microenvironment

    Altered gut microbiome in Parkinson\u27s disease and the influence of lipopolysaccharide in a human α-synuclein over-expressing mouse model

    Get PDF
    The interaction between the gut microbiota and alpha-synuclein (αSyn) aggregation in Parkinson’s disease (PD) is receiving increasing attention. The objective of this study was to investigate gut microbiota, and effects of an inflammatory lipopolysaccharide (LPS) trigger in a human αSyn over-expressing mouse model of PD (Thy1-αSyn). Stool samples from patients with confirmed PD and Thy1-αSyn mice were analyzed using 16S ribosomal RNA sequencing. Compared to healthy controls, the relative abundance of mucin-degrading Verrucomicrobiae and LPS-producing Gammaproteobacteria were greater in PD patients. In mice, the abundance of Gammaproteobacteria was negligible in both Thy1-αSyn and wild-type (WT) animals, while Verrucomicrobiae were reduced in Thy1-αSyn mice. The effect of LPS on intestinal barrier function was investigated in vitro using intestinal epithelial (IEC-6) cells, and in vivo via administration of LPS in drinking water to Thy1-αSyn mice. Acute exposure to LPS in vitro resulted in a reduction and altered distribution of the tight junction markers ZO-1 and e-Cadherin around the cell membrane in IEC-6 cells, as shown by immunohistochemistry. LPS administration in Thy1-αSyn mice resulted in the emergence of early motor manifestations at 10 weeks, compared to untreated mice who were still asymptomatic at this age. This study reaffirms that an altered microbiome exists in patients with PD, and supports the notion of a proinflammatory gut microbiome environment as a trigger for PD pathogenesis

    The response of plant community diversity to alien invasion: evidence from a sand dune time series

    Get PDF
    This study examines the process of invasion of coastal dunes in north-eastern Italy along a 60-year time series considering alien attributes (origin, residence time, invasive status, and growth form strategy) and habitat properties (species richness, diversity and evenness, proportion of aliens, and proportion of focal species). Vegetation changes through time were investigated in four sandy coastal habitats, using a fine-scale diachronic approach that compared vegetation data collected by use of the same procedure, in four time periods, from the 1950s to 2011. Our analysis revealed an overall significant decline of species richness over the last six decades. Further, both the average number of species per plot and the mean focal species proportion were proved to be negatively affected by the increasing proportion of alien species at plot level. The severity of the impact, however, was found to be determined by a combination of species attributes, habitat properties, and human disturbance suggesting that alien species should be referred to as ‘‘passengers’’ and not as ‘‘drivers’’ of ecosystem change. Passenger alien species are those which take advantage of disturbances or other changes to which they are adapted but that lead to a decline in native biodiversity. Their spread is facilitated by widespread anthropogenic environmental alterations, which create new, suitable habitats, and ensure human-assisted dispersal, reducing the distinctiveness of plant communities and inducing a process of biotic homogenization

    Poly-arginine-18 (R18) confers neuroprotection through glutamate receptor modulation, intracellular calcium reduction, and preservation of mitochondrial function

    No full text
    Recent studies have highlighted that a novel class of neuroprotective peptide, known as cationic arginine-rich peptides (CARPs), have intrinsic neuroprotective properties and are particularly effective anti-excitotoxic agents. As such, the present study investigated the mechanisms underlying the anti-excitotoxic properties of CARPs, using poly-arginine-18 (R18; 18-mer of arginine) as a representative peptide. Cortical neuronal cultures subjected to glutamic acid excitotoxicity were used to assess the effects of R18 on ionotropic glutamate receptor (iGluR)-mediated intracellular calcium influx, and its ability to reduce neuronal injury from raised intracellular calcium levels after inhibition of endoplasmic reticulum calcium uptake by thapsigargin. The results indicate that R18 significantly reduces calcium influx by suppressing iGluR overactivation, and results in preservation of mitochondrial membrane potential (ΔΨm) and ATP production, and reduced ROS generation. R18 also protected cortical neurons against thapsigargin-induced neurotoxicity, which indicates that the peptide helps maintain neuronal survival when intracellular calcium levels are elevated. Taken together, these findings provide important insight into the mechanisms of action of R18, supporting its potential application as a neuroprotective therapeutic for acute and chronic neurological disorders

    Nutrient addition drives declines in grassland species richness primarily via enhanced species loss

    No full text
    Declines in grassland diversity in response to nutrient addition are a general consequence of global change. This decline in species richness may be driven by multiple underlying processes operating at different time-scales. Nutrient addition can reduce diversity by enhancing the rate of local extinction via competitive exclusion, or by reducing the rate of colonization by constraining the pool of species able to colonize under new conditions. Partitioning net change into extinction and colonization rates will better delineate the long-term effect of global change in grasslands. We synthesized changes in richness in response to experimental fertilization with nitrogen, phosphorus and potassium with micronutrients across 30 grasslands. We quantified changes in local richness, colonization, and extinction over 8–10 years of nutrient addition, and compared these rates against control conditions to isolate the effect of nutrient addition from background dynamics. Total richness at steady state in the control plots was the sum of equal, relatively high rates of local colonization and extinction. On aggregate, 30%–35% of initial species were lost and the same proportion of new species were gained at least once over a decade. Absolute turnover increased with site-level richness but was proportionately greater at lower-richness sites relative to starting richness. Loss of total richness with nutrient addition, especially N in combination with P or K, was driven by enhanced rates of extinction with a smaller contribution from reduced colonization. Enhanced extinction and reduced colonization were disproportionately among native species, perennials, and forbs. Reduced colonization plateaued after the first few (<5) years after nutrient addition, while enhanced extinction continued throughout the first decade. Synthesis. Our results indicate a high rate of colonizations and extinctions underlying the richness of ambient communities and that nutrient enhancement drives overall declines in diversity primarily by exclusion of previously established species. Moreover, enhanced extinction continues over long time-scales, suggesting continuous, long-term community responses and a need for long-term study to fully realize the extinction impact of increased nutrients on grassland composition.Division of Environmental Biology; Institute on the Environment, University of Minnesota; National Science Foundation Long Term Ecological Research; National Science Foundation Research Coordination Network; U.S. Department of Agriculture. ;http://www.wileyonlinelibrary.com/journal/jec2023-11-22hj2023Mammal Research InstituteZoology and Entomolog

    Nutrient addition drives declines in grassland species richness primarily via enhanced species loss

    No full text
    Declines in grassland diversity in response to nutrient addition are a general consequence of global change. This decline in species richness may be driven by multiple underlying processes operating at different time-scales. Nutrient addition can reduce diversity by enhancing the rate of local extinction via competitive exclusion, or by reducing the rate of colonization by constraining the pool of species able to colonize under new conditions. Partitioning net change into extinction and colonization rates will better delineate the long-term effect of global change in grasslands. We synthesized changes in richness in response to experimental fertilization with nitrogen, phosphorus and potassium with micronutrients across 30 grasslands. We quantified changes in local richness, colonization, and extinction over 8–10 years of nutrient addition, and compared these rates against control conditions to isolate the effect of nutrient addition from background dynamics. Total richness at steady state in the control plots was the sum of equal, relatively high rates of local colonization and extinction. On aggregate, 30%–35% of initial species were lost and the same proportion of new species were gained at least once over a decade. Absolute turnover increased with site-level richness but was proportionately greater at lower-richness sites relative to starting richness. Loss of total richness with nutrient addition, especially N in combination with P or K, was driven by enhanced rates of extinction with a smaller contribution from reduced colonization. Enhanced extinction and reduced colonization were disproportionately among native species, perennials, and forbs. Reduced colonization plateaued after the first few (<5) years after nutrient addition, while enhanced extinction continued throughout the first decade. Synthesis. Our results indicate a high rate of colonizations and extinctions underlying the richness of ambient communities and that nutrient enhancement drives overall declines in diversity primarily by exclusion of previously established species. Moreover, enhanced extinction continues over long time-scales, suggesting continuous, long-term community responses and a need for long-term study to fully realize the extinction impact of increased nutrients on grassland composition
    corecore